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The influence of weak uniaxial small-scale anisotropy on the stability of the scaling regime and on the
anomalous scaling of the single-time structure functions of a passive scalar advected by the velocity field
governed by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group
and operator-product expansion within one-loop approximation of a perturbation theory. The explicit analytical
expressions for coordinates of the corresponding fixed point of the renormalization-group equations as func-
tions of anisotropy parameters are found, the stability of the three-dimensional Kolmogorov-like scaling re-
gime is demonstrated, and the dependence of the borderline dimension dc� �2,3� between stable and unstable
scaling regimes is found as a function of the anisotropy parameters. The dependence of the turbulent Prandtl
number on the anisotropy parameters is also briefly discussed. The influence of weak small-scale anisotropy on
the anomalous scaling of the structure functions of a passive scalar field is studied by the operator-product
expansion and their explicit dependence on the anisotropy parameters is present. It is shown that the anomalous
dimensions of the structure functions, which are the same �universal� for the Kraichnan model, for the model
with finite time correlations of the velocity field, and for the model with the advection by the velocity field
driven by the stochastic Navier-Stokes equation in the isotropic case, can be distinguished by the assumption
of the presence of the small-scale anisotropy in the systems even within one-loop approximation. The corre-
sponding comparison of the anisotropic anomalous dimensions for the present model with that obtained within
the Kraichnan rapid-change model is done.
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I. INTRODUCTION

Although, theoretical understanding of intermittency and
anomalous scaling in fully developed turbulence on the mi-
croscopic level remains one of the last unsolved problems of
the classical physics �1–4�, nevertheless, during the last two
decades a great progress has been achieved in the under-
standing of anomalous scaling of single-time correlation or
structure functions of passively advected scalar or vector
fields in the framework of models with a given Gaussian
statistics of the velocity field. The reason for their investiga-
tion is twofold. On one hand, the problems of the passive
advection of scalar or vector fields are noticeably easier for
the theoretical investigation than the original problem of
anomalous scaling of the velocity field driven by the stochas-
tic Navier-Stokes equation and, on the other hand, it was also
shown that the deviations from the classical Kolmogorov-
Obukhov �KO� theory are even more strongly noticeable for
passively advected scalar or vector field than for the velocity
field itself �see, e.g., Refs. �4–13��. Such deviations, referred
to as anomalous or nondimensional scaling, manifest them-
selves in a singular dependence of the correlation or structure
functions on the distances and on the integral �external� tur-
bulence scale, and it is believed that this phenomenon is
related to strong fluctuations of the energy flux.

The crucial role in the studies of passive advection was
played by the simple model of a passive scalar quantity ad-
vected by a random Gaussian velocity field, white in time
and self-similar in space, the so-called Kraichnan rapid-
change model �14�. Namely, in the framework of the rapid-
change model, for the first time, the anomalous scaling was
established on the basis of a microscopic model �15� and

corresponding anomalous exponents were calculated within
controlled approximations �16,17� �see also survey paper
�18� and references cited therein�. In Refs. �16,17�, the so-
called zero-mode approach was applied and it was shown
that nontrivial anomalous behavior is related to the zero
modes �homogeneous solutions� of the closed system of ex-
act differential equations satisfied by the equal-time correla-
tion functions.

A great progress in the understanding of anomalous scal-
ing in turbulence was also done by the renormalization-
group �RG� technique which represents an effective method
for the investigation of self-similar scaling behavior �19–21�.
In Refs. �22,23�, the field theoretic RG and the operator-
product expansion �OPE� were used in the systematic inves-
tigation of the Kraichnan rapid-change model. It was shown
that within the field theoretic RG approach the anomalous
scaling is related to the existence in the model of the com-
posite operators with negative critical dimensions in the
OPE, which are usually termed as dangerous operators �see,
e.g., Refs. �21,24,25� for details�.

Afterward, the field theoretic RG technique was also used
for the investigation of the anomalous behavior of various
descendants of the Kraichnan model, namely, models with
the inclusion of small-scale anisotropy �26�, the compress-
ibility �27–29�, the finite correlation time of velocity field
�30–34�, and the helicity �35�. Besides, advection of the pas-
sive vector field by the Gaussian self-similar velocity field
�with and without large- and small-scale anisotropies, pres-
sure, compressibility, and finite correlation time� has been
also investigated and all possible asymptotic scaling regimes
and crossover among them have been classified and anoma-
lous scaling was analyzed �36�. A general conclusion of all
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these investigations is that the anomalous scaling, which is
the most intriguing and important feature of the Kraichnan
rapid-change model, remains valid for all generalized mod-
els.

Nevertheless, it must be stressed that although the models
of turbulent advection by the so-called “synthetic” velocity
field describe many features of real turbulent advection they
still remain only as toy models of real turbulent systems.
This fact has important consequences. On one hand, they are
not able to describe some interesting properties of real tur-
bulence, e.g., within the rapid-change model the possible ef-
fects of helicity of the system �spatial parity violation� are
invisible in the framework of the field theoretic approach
�35� and, on the other hand, the models with Gaussian ve-
locity field with finite correlation time, which are able to
describe more properties of real turbulence, have their own
drawbacks. For example, their Galilean noninvariance �7�
leads to the fact that they do not take into account the self-
advection of turbulent eddies and, as a result of these the
so-called “sweeping effects,” the different time correlations
of the Eulerian velocity are not self-similar and depend
strongly on the integral scale; see, e.g., Ref. �37� �see also
Ref. �38��. Therefore, without a doubt, the crucial point for
further progress in understanding of properties of turbulent
flows at the microscopic level is to go beyond the Gaussian-
ity of the velocity field.

However, the transition to models with more realistic non-
Gaussian statistics of the velocity field, e.g., to the models
with statistics of the velocity field driven by the stochastic
Navier-Stokes equation, obviously leads to mathematical
complications in their theoretical investigations, especially
when some breaking of a symmetry of the turbulent environ-
ment is considered �e.g., anisotropy of energy pumping to the
system, compressibility of the fluid, or mirror symmetry vio-
lation�. This fact is the main reason of the present situation
that a lot of studies of the anomalous scaling of a single-time
structure functions of a passive scalar advected by a Gauss-
ian velocity field exist �as was briefly discussed above� and
that the investigation of these problems within the models
with the Navier-Stokes velocity field was done only in the
simplest isotropic and incompressible situation �39�.

On the other hand, the effects of a symmetry breaking can
be interesting. For example, the influence of anisotropy on
inertial range behavior of passively advected fields
�17,30,31,40–45�, as well as the velocity field itself �46–48�
is important �see also the survey paper �49� and references
cited therein, as well as recent astrophysical investigations,
e.g., in Refs. �50,51��. In this respect, it was shown that for
the even structure �or correlation� functions the exponents
which describe the inertial range scaling behavior exhibit
universality and they are ordered hierarchically with respect
to the degree of anisotropy with leading contribution given
by the exponent from the isotropic shell but, on the other
hand, the survival of the anisotropy in the inertial range is
demonstrated by the behavior of the odd structure functions,
namely, for example, the so-called skewness factor decreases
down the scales slower than expected earlier in accordance
with the classical KO theory.

However, as was already mentioned, all anisotropic stud-
ies of anomalous scaling were done only within toy models

of the turbulent advection with a given Gaussian statistics of
the velocity field. The main aim of the present paper is to go
beyond Gaussian statistics of the velocity field and to study
the influence of the so-called small-scale uniaxial anisotropy
�see the next section� on the anomalous scaling of the single-
time structure functions of a passive scalar field advected by
the velocity field driven by the stochastic Navier-Stokes
equation, i.e., within the model which takes into account the
correlations of the velocity field of higher order and is close
to real turbulent advection. But, as was shown in Ref. �52�,
the models of fully developed turbulence based on the sto-
chastic Navier-Stokes equation with the presence of the
small-scale anisotropy are rather difficult for investigations
even at one-loop level. Therefore, for simplicity, in what
follows, we shall suppose that the corresponding parameters
of anisotropy are close to zero, i.e., we shall work in the
so-called weak anisotropy limit. As we shall see, such an
assumption, on one hand, gives basic information about the
behavior of the corresponding anomalous exponents as con-
tinuous functions of the anisotropy parameters and, on the
other hand, the model is sufficiently easier for mathematical
analysis of the problem. The corresponding model with no
restrictions on anisotropy parameters is much more compli-
cated and will be analyzed elsewhere.

The main conclusion of the paper is the following: the
anomalous scaling of the single-time structure functions of a
passive scalar, which is universal �up to needed normaliza-
tions� for all models with a Gaussian statistics of the velocity
field �the rapid-change model, model with frozen velocity
field, etc.� and with a non-Gaussian statistics of the velocity
field �model with the velocity field driven by the stochastic
Navier-Stokes equation� within the one-loop approximation
in the isotropic case �or in the case with the large-scale an-
isotropy�, is strongly nonuniversal when the corresponding
models with the small-scale uniaxial anisotropy are consid-
ered. In this case, the corresponding anomalous dimensions
smoothly depend on the anisotropy parameters of the model.

In the end, let us describe briefly the solution of the prob-
lem in the framework of the field theoretic approach
�21,24,25�. It can be divided into two main stages. On the
first stage the multiplicative renormalizability of the corre-
sponding field theoretic model is demonstrated and the dif-
ferential RG equations for its correlation functions are ob-
tained. The asymptotic behavior of the latter on their
ultraviolet �UV� argument �r /�� for r�� and any fixed �r /L�
is given by infrared �IR� stable fixed points of those equa-
tions. Here, � and L are inner �ultraviolet� and outer �infra-
red� scales �lengths�. It involves some “scaling functions” of
the infrared argument �r /L�, whose form is not determined
by the RG equations. On the second stage, the behavior of
scaling functions at r�L is found from the OPE within the
framework of the general solution of the RG equations.
There, the crucial role is played by the critical dimensions of
various composite operators, which give rise to an infinite
family of independent aforementioned scaling exponents
�and hence to multiscaling�.

The paper is organized as follows. In Sec. II, the field
theoretic formulation of the stochastic model is given and the
corresponding Feynman diagrammatic technique is briefly
discussed. In Sec. III, we perform the UV renormalization of
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the model, the renormalization constants are calculated in
one-loop approximation, and the corresponding RG equa-
tions are derived. In Sec. IV, we discuss the stability of the
scaling regime of the model, which is governed by the cor-
responding IR fixed point of the RG equations. In Sec. V, the
influence of anisotropy on turbulent Prandtl number is briefly
discussed. In Sec. VI, the renormalization of the needed
composite operators is done and their critical dimensions are
found as functions of parameters of the model. Besides, the
anomalous scaling of the single-time structure functions un-
der the influence of anisotropy is discussed. In Sec. VII, the
comparison of the obtained results to the corresponding re-
sults obtained within the rapid-change model is done. The
main results are reviewed and discussed in Sec. VIII.

II. FIELD THEORETIC FORMULATION OF THE MODEL

The advection of a passive scalar field ��x����t ,x� �con-
centration of an impurity, temperature, etc.� by an incom-
pressible velocity field v�x��v�t ,x� ��ivi=0� is described by
the system of stochastic equations,

�t� + �v · ��� = �0u0�� + f�, �1�

�tv + �v · ��v = �0�v − �P + fv, �2�

where Eq. �1� represents the advection-diffusion equation for
the scalar field and Eq. �2� is the stochastic Navier-Stokes
equation for the transverse �due to incompressibility� veloc-
ity field. In Eqs. �1� and �2� we have used the following
standard notation: �t�� /�t; �i�� /�xi; ���2 is the Laplace
operator; �0 is the kinematic viscosity �in what follows, the
subscript 0 denotes bare parameters of the unrenormalized
theory�; �0u0 represents the molecular diffusivity, where the
dimensionless reciprocal Prandtl number u0 is extracted ex-
plicitly; P�x�� P�t ,x� is the pressure; and the summation
over dummy indices is implied. The random noise f�= f��x�
is taken to have a Gaussian distribution with correlator

D��x;x�� = �f��x�f��x��� = ��t − t��C�r/L�, r = x − x�,

�3�

where, in what follows, unimportant function C�r /L� must
only decrease rapidly enough for r��r��L for some integral
scale L. The main role of noise �3� is to preserve the steady
state of the system. On the other hand, the explicit form of
the transverse random force per unit mass fv is essential.
Standardly, we assume that it also obeys a Gaussian distri-
bution with zero mean and correlator

Dij
v �x;x�� = �f i

v�x�f j
v�x���

= ��t − t��	 ddk

�2��dRij�k�df�k�eik·�x−x��, �4�

where d is the dimension of the x space and Rij�k� is a
transverse projector. It describes geometric properties of the
random force and, in the simplest isotropic case, is defined as
the ordinary transverse projector, namely, Rij�k�� Pij�k�
=�ij −kikj /k2. The energy pumping function df�k� is chosen
in such a way to realize a realistic, i.e., infrared introduction

�by large-scale eddies� of the energy into the system and, at
the same time, it is important that the function df�k� must
have a power-law asymptotic form at large k. The last con-
dition is necessary for the application of the field theoretic
RG technique. Both conditions are satisfied by the function
�21,24,25�

df�k� = D0k4−d−2	, �5�

with a positive amplitude D0
0 and the exponent 0�	
�2. The most realistic value is 	=2 �21,25�. In Eq. �4�, the
needed infrared regularization is given by a restriction of the
integration from below, namely, km, where m corresponds
to another integral scale. We shall suppose that L�1 /m. For
further convenience it is also useful to introduce bare cou-
pling constant g0 instead of D0 by the following definition:

D0 � g0�0
3. �6�

In addition, g0 is a formal small parameter of the ordinary
perturbation theory, and it is related to the characteristic UV
momentum scale � �or inner length l
�−1� by the relation

g0 � �2	. �7�

As was already mentioned, the geometric properties of the
energy pumping are given by the form of the transverse pro-
jector Rij�k�. In the present work we shall study the model
when the random force has uniaxial anisotropic properties at
all scales defined by a unit vector n �the so-called small-scale
uniaxial anisotropy�. For this purpose it is convenient to take
the transverse projector Rij�k� in the following form:

Rij�k� = �1 + �1
�n · k�2

k2 Pij�k� + �2Pis�k�nsntPtj�k� ,

�8�

which is the simplest special case of a general uniaxial an-
isotropic transverse tensor structure �see, e.g., Ref. �26��.
Here, ni is the ith component of the unit vector n and the
necessary condition for positively defined correlator �4� is
that the anisotropy parameters �1 and �2 must satisfy in-
equalities �1
−1 and �2
−1.

Using the general theorem �53�, the stochastic model
�1�–�4� can be rewritten into the equivalent field theoretic
model of the set of fields �= �v ,� ,v� ,��� with the following
action functional:

S��� =
1

2
	 dt1ddx1dt2ddx2�vi��t1,x1�Dij

v �t1,x1;t2,x2�v j��t2,x2�

+ ���t1,x1�D��t1,x1;t2,x2����t2,x2��

+	 dt ddx„���− �t − v · �+ �0u0�� + �0�n · ��2���

+ v��− �t − v · �+ �0�� + �10�n · ��2��v

+ �0n · v���20� + �30�n · ��2�n · v… , �9�

where v��x� and ���x� are the needed auxiliary fields with the
same tensor properties as fields v�x� and ��x�. D� and Dv are
the correlation functions given in Eqs. �3� and �4� for the
random forces f� and fv, respectively. The terms with new
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unrenormalized parameters �0, �10, �20, and �30, which are
not present in the original stochastic equations �1� and �2�,
are related to the presence of small-scale uniaxial anisotropy
and they must be introduced into the action to make the
model multiplicatively renormalizable �see, e.g., Refs.
�26,52� for details�.

Because the auxiliary vector field v��x� is also transverse,
i.e., �ivi�=0, it allows one to omit the pressure term in Eq.
�9�: the corresponding term has the following form:

	 dt ddxvi��iP ,

and after the integration by parts it is evident that it vanishes,
namely,

	 dt ddxvi��iP = −	 dt ddxP�ivi� = 0.

Model �9� corresponds to a standard Feynman diagram-
matic technique. Explicit analytical expressions for, in what
follows, important bare propagators �����0, �vi�v j�0, and
�viv j�0 are �in the frequency-momentum representation�

�����0 =
1

i� + �0u0k2 + �0�0u0�n · k�2 , �10�

�vi�v j�0 =
Pij

K
−

K̃PisnsntPtj

K�K + K̃�1 − �k
2��

, �11�

�viv j�0 = −
K1Pij

KK�
+

PisnsntPtj

K�K� + K̃�1 − �k
2��
� K̃K1

K�

+
K̃�K1 + K2�1 − �k

2��

K + K̃�1 − �k
2�

− K2� , �12�

where

K = i� + �0k2 + �0�10�n · k�2, �13�

K� = − i� + �0k2 + �0�10�n · k�2, �14�

K1 = − g0�0
3k4−d−2	�1 + �1�k

2� , �15�

K2 = − g0�0
3k4−d−2	�2, �16�

K̃ = �0�20k
2 + �0�30�n · k�2, �17�

�k
2 =

�n · k�2

k2 . �18�

Propagators �10�–�12� are written in the form suitable also
for the investigation of the strong small-scale anisotropy
case, i.e., when no restrictions on the anisotropy parameters
�1 and �2 are imposed. In our case, when weak anisotropy is
supposed, it is enough to work with linear parts of the propa-
gators with respect to all anisotropy parameters, but for
shortness we shall not present their explicit forms here. The

graphical representation of propagators �10�–�12� is shown in
Fig. 1 �the ends with a slash in the propagators �����0 and
�v�v�0 correspond to the fields �� and v�, respectively, and
the ends without a slash correspond to the fields � and v,
respectively�. The triple vertices �or interaction vertices�
−��v j� j�=��v jVj� and −vi�v j� jvl=vi�v jWijlvl /2, where Vj
= ikj and Wijl= i�kl�ij +kj�il� �in the momentum-frequency
representation�, are present in Fig. 2, where momentum k is
flowing into the vertices via the auxiliary fields �� and v�,
respectively.

It is well known that the formulation of the problem
through the action functional �9� replaces the statistical av-
erages of random quantities in the stochastic problem defined
by Eqs. �1�–�4� with equivalent functional averages with
weight exp S���. The generating functionals of the total
Green’s functions G�A� and the connected Green’s functions
W�A� are then defined by the functional integral �21�

G�A� = eW�A� =	 D� eS���+A�, �19�

where A�x�= �A� ,A�� ,Av ,Av�� represents a set of arbitrary
sources for the set of fields �, D��D�D��DvDv� denotes
the measure of functional integration, and the linear form A�
is standardly defined as

A� =	 dx�A��x���x� + A���x����x� + Ai
v�x�vi�x�

+ Ai
v��x�vi��x�� . �20�

III. RENORMALIZATION-GROUP ANALYSIS

Using the standard field-theoretic analysis of canonical
dimensions leads to the information about possible UV di-
vergences in the model �see, e.g., Refs. �20,21��. Due to the
fact that the dynamical model �9� belongs to the class of the
so-called two-scale models �21,24,25�, the canonical dimen-
sion of some quantity F is given by two numbers, namely,
the momentum dimension dF

k and the frequency dimension

〈θ′θ〉0 =

〈vivj〉0 =

〈v′ivj〉0 =

FIG. 1. Graphical representation of needed propagators of the
model.

Vj =
v′i

vj

vl

Wijl =
θ′

vj

θ

FIG. 2. The triple �interaction� vertices of the model. Momen-
tum k is flowing into the vertices via the auxiliary fields �� and v�.
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dF
�. To find the dimensions of all quantities, it is convenient

to use the standard normalization conditions dk
k=−dx

k

=1, d�
�=−dt

�=1, dk
�=dx

�=d�
k =dt

k=0, and the requirement
that each term of the action functional must be dimensionless
separately with respect to the momentum and frequency di-
mensions. The total canonical dimension dF is then defined
as dF=dF

k +2dF
� �it is related to the fact that �t��0�

2 in the
free action �9� with the choice of zero canonical dimension
for �0�. In the framework of the theory of renormalization the
total canonical dimension in dynamical models plays the
same role as the momentum dimension does in static models.
The canonical dimensions of our model are present in Table
I, where also the canonical dimensions of the renormalized
parameters are shown.

The field theoretic model �9� is logarithmic at 	=0 �the
coupling constant g0 is dimensionless�; therefore, in the
framework of the minimal subtraction �MS� scheme �20�,
which is always used in what follows, possible UV diver-
gences in the correlation functions have the form of poles in
parameter 	. The superficial divergences can be present only
in the one-irreducible Green’s functions for which the corre-
sponding total canonical dimensions are a non-negative inte-

ger. Detailed analysis of the possible divergences of the
model was done, e.g., in Ref. �39�; therefore, it is not used to
repeat it here. This analysis shows that superficially diver-
gent functions of our model are only functions �v�v�1−ir and
�����1−ir and action �9� has all necessary tensor structures to
remove divergences multiplicatively. It can be explicitly ex-
pressed in the multiplicative renormalization of the param-
eters g0, u0, �0, �0, and �i0 �i=1,2 ,3� in the following form:

�0 = �Z�, g0 = g�2	Zg, u0 = uZu, �21�

�0 = �Z�, �i0 = �iZ�i
, �22�

with i=1,2 ,3. Here, the dimensionless parameters g, u, �, �,
and �i are the renormalized counterparts of the correspond-
ing bare ones; � is the renormalization mass �a scale setting
parameter�, an artifact of the dimensional regularization.
Quantities Zi=Zi�g ,u ,� ,�i ;d ;	� are the so-called renormal-
ization constants. They contain poles in 	.

The renormalized action functional has the following
form:

SR��� =
1

2
	 dt1ddx1dt2ddx2�vi��t1,x1�Dij

v �t1,x1;t2,x2�v j��t2,x2� + ���t1,x1�D��t1,x1;t2,x2����t2,x2��

+	 dt ddx„���− �t − v · �+ �u�Z5� + �Z6�n · ��2��� + v��− �t − v · �+ ��Z1� + �1Z2�n · ��2��

�v + �n · v���2Z3� + �3Z4�n · ��2�n · v… . �23�

By comparison of the renormalized action �23� with defini-
tions of the renormalization constants Zj, where j
=g ,u ,� ,� ,�i �i=1,2 ,3�, which are given in Eqs. �21� and
�22�, one comes to the relations among them as follows:

Z� = Z1, Zg = Z1
−3, Zu = Z5Z1

−1,

Z�i
= Zi+1Z1

−1, Z� = Z6Z5
−1. �24�

The renormalization constants Zi �i=1, . . . ,6� are determined
by the requirement that the one-irreducible Green’s functions
�v�v�1−ir and �����1−ir must be UV finite when are written in

the renormalized variables, i.e., they have no singularities in
the limit 	→0. On the other hand, the one-irreducible
Green’s functions �v�v�1−ir and �����1−ir are related to the
corresponding self-energy operators �v�v and ����, which are
expressed via Feynman diagrams, by the corresponding
Dyson equations. In the frequency-momentum representation
they can be written in the following convenient form:

�vi�v j�1−ir = �− i� + �0p2 + �0�10�n · p�2��ij + ��0�20p2

+ �0�30�n · p�2�ninj − �ij
v�v��,p� , �25�

TABLE I. Canonical dimensions of the fields and parameters of the model under consideration.

F v v� � �� m ,� ,� �0 ,� g0

g ,u0 ,u ,�0 ,�
�i0 ,�i �i=1,2 ,3�

dF
k −1 d+1 0 d 1 −2 2	 0

dF
� 1 −1 −1 /2 1/2 0 1 0 0

dF 1 d−1 −1 d+1 1 0 2	 0
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�����1−ir = − i� + �0u0p2 + �0u0�0�n · p�2 − ������,p� .

�26�

Thus, Zi �i=1, . . . ,6� are found from the requirement that the
UV divergences are canceled in Eqs. �25� and �26� after the
substitution e0=e�deZe. This determines Zi �i=1, . . . ,6� up to
an UV finite contribution, which is fixed by the choice of the
renormalization scheme. In the MS scheme all the renormal-
ization constants have the form 1+ poles in 	. In one-loop
approximation the self-energy operators �v�v and ���� are
given by Feynman diagrams, which are shown in Fig. 3, and
their explicit analytical form is given as follows:

�ij
v�v�p� = −

Sd

�2��d

g�

2	
�p2�ijA1 + �n · p�2�ijA2 + p2ninjA3

+ �n · p�2ninjA4� , �27�

�����p� = −
Sd

�2��d

g�

2	
�p2B1 + �n · p�2B2� , �28�

where �in weak small-scale anisotropy limit�

A1 =
1

4d�d + 2��d + 4�
�d�d − 1��d + 4� + �1�d + 1��d + 2�

+ �2�d − 2� − 2�1�d2 + 3d + 3� − �2�3d − 2� − 3�3�3d

+ 2�/�d + 6�� , �29�

A2 =
1

2d�d + 2��d + 4�
�− �1�d − 2� + �2�d3 + 2d2 − 6d − 4�/2

− �1�2 − 3d� − �2�3d3 + 5d2 − 16d − 8�/4 − �3d�3d2

+ 7d − 2�/�4�d + 6��� , �30�

A3 =
1

d�d + 2��d + 4�
���2 − �1��d + 1� + �1�2d + 1� − �2�d3

+ d2 + 4d + 8�/8 − �3d�d2 − d + 22�/�8�d + 6��� , �31�

A4 = −
�3�d − 10�

2�d + 2��d + 6�
, �32�

and

B1 =
1

2d�d + 2��u + 1�
��d − 1��d + 2� + �1�d + 1� + �2

− ��1�d + 1� + �2��u + 2�/�u + 1�

− 3�3�u + 2�/��d + 4��u + 1�� − �u�d + 1�/�u + 1�� ,

�33�

B2 =
1

2d�d + 2��u + 1�
�− 2�1 + �2�d2 − 2�

+ 2�1�u + 2�/�u + 1� − �2�d2 − 2��u + 2�/�u + 1�

− �3�d − 2��d + 2��u + 2�/��d + 4��u + 1��

+ 2�u/�u + 1�� . �34�

In Eqs. �27� and �28�, Sd=2�d/2 /��d /2� denotes the area of
the surface of the d-dimensional unit sphere. Thus, the renor-
malization constants Zi �i=1, . . . ,6� are given as follows:

Z1 = 1 −
ḡ

2	
A1, Zj+1 = 1 −

ḡ

2	

Aj+1

� j
, �35�

Z5 = 1 −
ḡ

2	

B1

u
, Z6 = 1 −

ḡ

2	

B2

u�
, �36�

where we have also introduced suitable notation ḡ
=gSd / �2��d and j=1,2 ,3.

In what follows, we shall be interested in the behavior of
the equal-time structure functions of the scalar field �,
namely,

SN�r� � ����t,x� − ��t,x���N�, r = �x − x�� �37�

in the inertial range specified by the inequalities l=1 /��r
�L=1 /m �l is an internal length�. In the field theoretic for-
mulation of our stochastic problem the angular brackets �¯ �
mean the functional average over fields � ,�� ,v� ,v with
weight exp�SR� and independence of the original unrenor-
malized model of the scale-setting parameter � of the renor-
malized model yields the RG differential equations for the
renormalized structure functions �in general for arbitrary cor-
relation functions� of the scalar field

�D� + �
i=g,u,�j,�

�i�i − ��D��SN
R = 0. �38�

Here, Dx�x�x stands for any variable x and the RG func-
tions �the � and the � functions� are given by the well-
known definitions �20,21�. In our case, using relations �24�
for the renormalization constants, they acquire the following
form:

�i � D� ln Zi �39�

for any renormalization constant Zi �i=1, . . . ,6�, and

�g � D�g = g�− 2	 + 3�1� , �40�

�u � D�u = u��1 − �5� , �41�

��j
� D�� j = � j��1 − � j+1�, j = 1,2,3, �42�

Σθ′θ =

Σv′v =

FIG. 3. The one-loop diagrams that contribute to the self-energy
operators ���� and �v�v.
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�� � D�� = ���5 − �6� . �43�

Now, using the definition of the anomalous dimensions �i
�i=1, . . . ,6� in Eq. �39� together with the renormalization
constants given in Eqs. �35� and �36�, one comes to the fol-
lowing expressions:

�1 = ḡA1, � j+1 =
ḡAj+1

� j
, j = 1,2,3, �44�

�5 =
ḡB1

u
, �6 =

ḡB2

u�
. �45�

In the next section we shall use these results for the investi-
gation of stability of the nontrivial scaling regime of the
model.

IV. STABILITY OF THE SCALING REGIME

Possible scaling regimes of a renormalized model are de-
fined by the IR stable fixed points of the corresponding sys-
tem of the RG equations �20,21�. The fixed point of the RG
equations is defined by � functions, namely, by requirement
of their vanishing. In our case we have the system of six �
functions as given in Eqs. �40�–�43�. Thus, the coordinates of
the fixed point are determined by the system of six equations,

�C�C�� = 0, �46�

where we have denoted C= �g ,u ,�i ,�� �i=1,2 ,3� and C�

represents the corresponding value at the fixed point. The IR
stability of the fixed point is given by the positive real parts
of the eigenvalues of the matrix

�lm = � ��Cl

�Cm


C=C�

, l,m = 1, . . . ,6. �47�

In the weak small-scale anisotropy case we suppose that
the coordinates of the fixed point are linear functions of the
anisotropy parameters of the model, namely, �1 and �2. Us-
ing this assumption the coordinates of the fixed point can be
found analytically in the following form:

g� = g0� + �1g1� + �2g2�, �48�

u� = u0� + �1u1� + �2u2�, �49�

�1� = �1�11� + �2�12�, �2� = �1�21� + �2�22�, �50�

�3� = �1�31� + �2�32�, �� = �1�1� + �2�2�, �51�

where explicit expressions for coefficients gj� ,uj� ,�ik� ,�k�

for i=1,2 ,3; j=0,1 ,2; and k=1,2 are given in Appendix A.
To investigate the stability of the fixed point, it is neces-

sary to apply it in the matrix of the first derivatives given in
Eq. �47�. In our case the matrix can be written in the follow-
ing form:

�ij =�
2	

��g

��1

��g

��2

��g

��3
0 0

0
���1

��1

���1

��2

���1

��3

0 0

0
���2

��1

���2

��2

���2

��3

0 0

0 0 0
���3

��3

0 0

0
��u

��1

��u

��2

��u

��3

��u

�u

��u

��

0
���

��1

���

��2

���

��3

���

�u

���

��

�
C=C�

.

�52�

Therefore, the eigenvalues of the matrix are

�1 = 2	 , �53�

�2,3 =
1

2
� ���1

��1
+

���2

��2


�
1

2
�� ���1

��1
−

���2

��2
2

+ 4
���1

��2

���2

��1
, �54�

�4 =
���3

��3
, �55�

�5,6 =
1

2
� ��u

�u
+

���

��
�

1

2
�� ��u

�u
−

���

��
2

+ 4
��u

��

���

�u
,

�56�

where all quantities are taken at the fixed point.
The eigenvalues �2, �3, �5, and �6 are rather complicated

functions and we shall not present their explicit form here.
On the other hand, it can be shown numerically that for d

2, 	
0, and for small enough absolute values of aniso-
tropy parameters �1 and �2 �compatible with the general
assumption of weak anisotropy� they are positive; thus, they
do not influence the stability of the scaling regime. The op-
posite situation is given by eigenvalue �4. In the weak aniso-
tropy case its explicit form reads

�4 =
2	�c0 + �1c1 + �2c2�

3d�d − 1��d + 6��3d4 + 4d3 − 5d2 + 10d − 56�
,

�57�

with

c0 = d�1456 − 652d + 144d2 − 129d3 − 55d4 + 25d5 + 3d6� ,

c1 = − 2�320 + 48d − 18d2 − 39d3 − 26d4 + 3d5� ,
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c2 = 2�160 + 504d − 102d2 + 15d3 − 61d4 + 6d5� ,

and it has the solution �4=0 within the interval of spatial
dimensions d� �2,3�. In the isotropic limit, i.e., for �1→0
and �2→0, this solution obtains simple form �25�

dc =
3�17 − 7

2
� 2.684 66, �58�

where the so-called borderline dimension is denoted as dc
�for d
dc the Kolmogorov scaling regime is stable and for
d�dc it is unstable, i.e., there is no scaling behavior�. On the
other hand, in the small-scale anisotropy case, borderline di-
mension dc becomes a function of anisotropy parameters �1
and �2. The corresponding dependence in weak anisotropy
case �for relatively small absolute values of the anisotropy
parameters� is shown in Fig. 4. The most important conclu-
sion for our further analysis is the fact that the weak aniso-
tropy does not disturb the stability of the three-dimensional
system, i.e., the borderline dimension dc as a function of the
anisotropy parameters is less than 3 for small enough aniso-
tropy parameters.

However, it must be mentioned that the RG analysis
briefly discussed above gives the same results as the analysis
present in Ref. �54� �see also Ref. �55�, where the same
method is used in the analysis of the weak anisotropy limit of
magnetohydrodynamic �MHD� turbulence�. In Ref. �54� the
correct treatment of the problem of stability of the scaling
regime of the present model, at the first time studied in Ref.
�56�, was given �see also Ref. �57�, where the problem of
anisotropy in the stochastic Navier-Stokes equation was
studied�.

In general, the issue of interest is especially multiplica-
tively renormalizable equal-time two-point quantities G�r�
�see also, e.g., Ref. �30��. Examples of such quantities are the
equal-time structure functions in the inertial interval as they
were defined in Eq. �37�. The IR scaling behavior of the
function G�r� �for r / l�1 and any fixed r /L�

G�r� � �0
dG
�

l−dG�r/l�−�GR�r/L� �59�

is related to the existence of the IR stable fixed point of the
RG equations �see above�. In Eq. �59�, dG

� and dG are the
corresponding canonical dimensions of the function G �the

canonical dimensions of the model are given in Sec. III�;
R�r /L� is the so-called scaling function, which cannot be
determined by the RG equation �see, e.g., Ref. �21��; and �G
is the critical dimension defined as

�G = dG
k + ��dG

� + �G
� . �60�

Here, �G
� is the fixed point value of the anomalous dimension

�G���� ln ZG, where ZG is the renormalization constant of
the multiplicatively renormalizable quantity G, i.e., G
=ZGGR �31�, and ��=2−��

� is the critical dimension of the
frequency with ��

�=�1
�, which is defined in Eq. �44� and �1

�

means that �1 is taken at the fixed point. From Eq. �40� one
finds ��

���1
�=2	 /3. It is exact one-loop result, i.e., no

higher-loop corrections exist. It means that the critical di-
mension of frequency is also known exactly, namely, ��

=2�1−	 /3�, as well as the critical dimensions of the fields,

�v = 1 −
2	

3
, �v� = d − 1 +

2	

3
, �61�

�� = − 1 +
	

3
, ��� = d + 1 −

	

3
. �62�

The renormalized function GR must satisfy the RG equa-
tion of the form

�DRG + �G�GR�r� = 0, �63�

with operator DRG given explicitly in Eq. �38�, namely,

DRG � D� + �
i=g,u,�j,�

�i�i − ��D�. �64�

The difference between the functions G and GR is only in the
normalization, choice of parameters �bare or renormalized�,
and related to this choice the form of the perturbation theory
�in g0 or in g�. The existence of a nontrivial IR stable fixed
point means that in the IR asymptotic region r / l�1 and any
fixed r /L the function G�r� takes on the self-similar form
given in Eq. �59�. As was already mentioned the scaling
function R�r /L� is not determined by the RG equation itself.
The dependence of the scaling functions on the argument r /L
in the region r /L�1 can be studied using the well-known
Wilson operator-product expansion �OPE� �20,21,24,25�. It
shows that, in the limit r /L→0, the function R�r /L� can be
written in the following asymptotic form:

R�r/L� = �
i

CFi
�r/L��r/L��Fi, �65�

where CFi
are coefficients regular in r /L. In general, the

summation is implied over certain renormalized composite
operators Fi with critical dimensions �Fi

. In the case under
consideration the leading contribution is given by operators
Fi having the form F�N , p�=�i1

�¯�ip
���i��i��n with N= p

+2n. In Sec. VI, we shall consider them in detail, where the
complete one-loop calculation of the critical dimensions of
the composite operators F�N,p� will be given for arbitrary val-
ues of N, d, and small absolute values of anisotropy param-
eters �1,2.
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FIG. 4. �Color online� Dependence of the borderline dimension
dc on the anisotropy parameters �1 and �2 in the weak anisotropy
limit.
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V. ANISOTROPIC PRANDTL NUMBER

Before we shall investigate the anomalous scaling of the
structure functions of the advected scalar field, let us briefly
discuss the dependence of the so-called turbulent Prandtl
number on the anisotropy parameters. The molecular Prandtl
number Pr is defined as the dimensionless ratio of the coef-
ficient of kinetic viscosity �0 and the coefficient of diffusiv-
ity �0u0 �see Eqs. �1� and �2��. In the case of fully developed
turbulence, diffusion processes are radically accelerated and
the concept of the universal turbulent Prandtl number Prt
emerges as the ratio of the corresponding coefficient of tur-
bulent viscosity and the coefficient of turbulent diffusivity.
Here, the universality of the turbulent Prandtl number means
its independence of individual properties of the fluid. Re-
cently, the problem of the turbulent Prandtl number in the
isotropic case was studied by the field theoretic approach in
Ref. �58�, where two-loop corrections to this quantity were
calculated. It was shown that the turbulent Prandtl number is
perturbatively rather stable, namely, the two-loop contribu-
tions are less than 10% of the one-loop result �see Ref. �58�
for details� and the obtained result is in very good agreement
with experimental values �1,59,60�.

On the other hand, the presence of the small-scale aniso-
tropy in the system under consideration leads to the depen-
dence of the turbulent Prandtl number on the anisotropy pa-
rameters. It can be shown �58� that within the one-loop
approximation Prt is given directly by the fixed point value
of the parameter u, namely, Prt=1 /u�. Therefore, applying it
in our case, the dependence of the turbulent Prandtl number
on the parameters of anisotropy in the weak anisotropy limit
in one-loop approximation is given by the following simple
relation:

Prt =
1

u0� + �1u1� + �2u2�

, �66�

where explicit form of the coefficients uj� for j=0,1 ,2 are
given in Appendix A. In Fig. 5, the dependence can be seen
explicitly. It can be seen that the one-loop weak anisotropy
corrections to the one-loop isotropic turbulent Prandtl num-

ber, Prt
iso=0.7179 �58�, are smaller than the two-loop isotro-

pic contribution and are in the region of �2% of the isotro-
pic value. Nevertheless, the situation can be considerably
different when no restrictions on the uniaxial anisotropy pa-
rameters will be assumed. But this question is out of scope of
the present paper and will be analyzed elsewhere.

VI. CRITICAL DIMENSIONS OF COMPOSITE
OPERATORS AND ANOMALOUS SCALING

A. Operator product expansion

Using the OPE �20,21,24,25�, the equal-time product
F1�x��F2�x�� of two renormalized composite operators �61�
at x= �x�+x�� /2=const and r=x�−x�→0 can be written in
the following form:

F1�x��F2�x�� = �
i

CFi
�r�Fi�x,t� , �67�

where the summation is taken over all possible renormalized
local composite operators Fi allowed by symmetry with defi-
nite critical dimensions �Fi

, and functions CFi
are the corre-

sponding Wilson coefficients. The renormalized correlation
function �F1�x��F2�x��� can now be found by averaging Eq.
�67� with the weight exp SR with SR from Eq. �23�. The quan-
tities �Fi� appear on the right-hand side and their asymptotic
behavior in the limit L−1→0 is then found from the corre-
sponding RG equations and has the form �Fi��L−�Fi. From
the OPE �67� one can find that the scaling function R�r /L� in
representation �59� for the correlation function F1�x��F2�x��
has the form given in Eq. �65�, where the coefficients CFi

are
regular in �r /L�2.

The specific feature of the turbulence models is the exis-
tence of operators with negative critical dimensions �the so-
called “dangerous” operators� �21,22,24,25,27�. Their pres-
ence in the OPE determines the IR behavior of the scaling
functions and leads to their singular dependence on L when
r /L→0. If the spectrum of the dimensions �Fi

for a given
scaling function is bounded from below, the leading term of
its behavior for r /L→0 is given by the minimal dimension.
At this point the turbulence models are crucially different
from the models of critical phenomena, where the leading
contribution to representation �59� is given by the simplest
operator F=1 with the dimension �F=0, and the other op-
erators determine only the corrections that vanish for r /L
→0.

In what follows, our aim is to investigate the behavior of
the equal-time structure functions of the scalar field as de-
fined in Eq. �37�. In this case, representation �59� is valid
with the following dimensions:

dG
� = −

N

2
, dG = − N, �G = N�− 1 +

	

3
 . �68�

In general, not only do the operators which are present in
the corresponding Taylor expansion are entering into the
OPE but also all possible operators that admix to them in
renormalization. In our anisotropic model the leading contri-
bution of the Taylor expansion for the structure functions
�37� is given by the tensor composite operators constructed
solely of the scalar gradients
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FIG. 5. �Color online� Dependence of the Prandtl number Prt on
the anisotropy parameters �1 and �2 in the weak anisotropy limit.

INFLUENCE OF ANISOTROPY ON ANOMALOUS SCALING… PHYSICAL REVIEW E 80, 046302 �2009�

046302-9



F�N,p� � �i1
�¯ �ip

���i��i��n, �69�

where N= p+2n is the total number of the fields � entering
into the operator and p is the number of the free vector
indices �see, e.g., Ref. �26� for details�.

B. Composite operators F[N ,p]: Renormalization
and critical dimensions

The necessity of additional renormalization of the com-
posite operators �69� is related to the fact that the coinci-
dence of the field arguments in Green’s functions containing
them leads to additional UV divergences. These divergences
must be removed by special kind of renormalization proce-
dure, which can be found, e.g., in Refs. �19–21,24,25�. Be-
sides, typically, the composite operators are mixed under
renormalization.

Thus, let F��F�� be a closed set of composite operators
which are mixed only with each other in renormalization.
Then the renormalization matrix ZF��Z��� and the matrix of
corresponding anomalous dimensions �F������ for this set
are given as follows:

F� = �
�

Z��F�
R, �F = ZF

−1D̃�ZF. �70�

Renormalized composite operators are subjected to the fol-
lowing RG differential equations:

�D� + �
i=g,u,�j,�

�i�i − ��D�F�
R = − �

�

���F�
R, �71�

which lead to the following matrix of critical dimensions
�F������:

�F = dF
k + ��dF

� + �F
� , �� = 2 −

2	

3
, �72�

where dF
k and dF

� are diagonal matrices of the corresponding
canonical dimensions and �F

� is the matrix of anomalous di-
mensions �70� taken at the fixed point. In the end, the critical
dimensions of the set of operators F��F�� are given by the
eigenvalues of the matrix �F. The so-called “basis” operators
that possess definite critical dimensions have the form

F�
bas = �

�

U��F�
R, �73�

where the matrix UF= �U��� is such that �F� =UF�FUF
−1 is

diagonal.
As was already mentioned, in what follows, the central

role is played by tensor composite operators
�i1

�¯�ip
���i��i��n, constructed solely of the scalar gradi-

ents. For further convenience it is useful to deal with the
scalar operators obtained by contracting the tensors with the
appropriate number of the uniaxial anisotropy vectors n �26�,

F�N,p� � ��n · ����p��i��i��n, N � 2n + p . �74�

Detailed analysis shows that the composite operators �74�
with different N are not mixed in renormalization, and there-
fore the corresponding renormalization matrix Z�N,p��N�,p�� is
in fact block diagonal, i.e., Z�N,p��N�,p��=0 for N��N �26�.

Further reduction in the matrix elements of the matrix of
renormalization constants Z is obtained in the isotropic case,
as well as in the case when the large-scale anisotropy is
present. In these situations the elements Z�N,p��N,p�� vanish for
p�p�; thus, the block Z�N,p��N,p�� is in fact triangular along
with the corresponding blocks of the matrices UF and �F
from Eqs. �73� and �72�. In the isotropic case it can be di-
agonalized by changing to irreducible operators �scalars, vec-
tors, and traceless tensors�, but even for nonzero imposed
gradient its eigenvalues are the same as in the isotropic case.
Therefore, the inclusion of large-scale anisotropy does not
affect critical dimensions of the operators �74�. On the other
hand, in the case when small-scale anisotropy is present, the
operators with different values of p mix heavily in renormal-
ization, and the matrix Z�N,p��N,p�� is neither diagonal nor tri-
angular here and one can write

F�N,p� = �
l=0

�N/2�
Z�N,p��N,N−2l�F

R�N,N − 2l� , �75�

where �N /2� means the integer part of N /2. Therefore, each
block of renormalization constants with a given N is an
��N /2�+1�� ��N /2�+1� matrix. Of course, the matrix of criti-
cal dimensions �72�, whose eigenvalues at the IR stable fixed
point are the critical dimensions ��N , p� of the set of opera-
tors F�N , p�, has also a dimension ��N /2�+1�� ��N /2�+1�.

To obtain the renormalization constants Z�N,p��N,p�� we are
interested in the Nth term of the expansion of the generating
functional ��x ;�� of the one-irreducible Green’s functions
with one composite operator F�N , p� from Eq. �74� and any
number of fields �. We denote it as �N�x ;�� and it has the
following form:

�N�x;�� =
1

N!
	 dx1 ¯	 dxN ��x1� ¯ ��xN��F�N,p�

��x���x1� ¯ ��xN��1-ir. �76�

In the one-loop approximation it is given as

�N = F�N,p� + ��1�, �77�

where ��1� is given by the analytical calculation of the dia-
gram in Fig. 6, and the first term in Eq. �77� represents “tree”
approximation �see also Ref. �26��.

The black circle with two attached lines in the diagram in
Fig. 6 denotes the variational derivative V�x ;x1 ,x2�
��2F�N , p� /���x1����x2�, where the second variation makes
needed combinatorics, namely, the operator F�N , p� contains

Γ(1) = 1
2

FIG. 6. Graphical representation of the one-loop correction to
�N in Eq. �77�.
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N fields � and one must take two of them �in all possible
ways� to construct the one-loop diagram as shown in Fig. 6.
It can be represented in the following convenient form �26�:

V�x;x1,x2� = �i��x − x1�� j��x − x2�
�2

�ai � aj
��n · a�p�a2�n� ,

�78�

where a constant vector ai will be substituted with �i��x�
after the differentiation �see below�. The analytical form of
the diagram in Fig. 6 �without the symmetry factor 1/2� is the
following:

	 dx1 ¯	 dx4 V�x;x1,x2����x1����x3��0���x2����x4��0

��vk�x3�vl�x4��0�k��x3��l��x4� , �79�

where the bare propagators are given in Eqs. �10� and �12�
and the derivatives are related to the ordinary vertex factors
shown in the right figure in Fig. 2.

We are interested in the UV divergent part of expression
�79�, which is needed for the determination of the corre-
sponding renormalization constants. But the needed UV di-
vergent part is proportional to the polynomial built of N gra-
dients �i��x� at a single space-time point x, and all of them
have been already extracted from Eq. �79�, namely, N−2
gradients are given by vertex �78� and the other two gradi-
ents are given by the ordinary vertex factors in Fig. 1. This
important point allows us to replace the gradients with the
constant vectors a. Therefore, the divergent part of expres-
sion �79� can be written in the following compact form:

akal
�2

�ai � aj
��n · a�p�a2�n�Xij,kl, �80�

with

Xij,kl �	 dx3	 dx4�i���x����x3��0� j���x����x4��0

��vk�x3�vl�x4��0. �81�

After rather time consuming but straightforward calculations
one obtains the following result for the quantity defined in
Eq. �80�:

Sd

�2��d

g

8u�1 + u�2

1

d�d + 2��d + 4�
��

m
2	1

	

��Q1F�N,p − 2� + Q2F�N,p� + Q3F�N,p + 2�� ,

�82�

where we have substituted the unrenormalized quantities
with the renormalized one, ai have been replaced with the
gradients �i��x� �thus, they again form the operators F�N ,q�,
with q= p−2, p , p+2�, and the explicit form of the coeffi-
cients Qi �i=1,2 ,3� is given in Appendix B. The absence of
a term proportional to the operator F�N , p+4� in Eq. �82�, in
contrast to the corresponding expressions obtained in Refs.
�26,34� is related to the weak anisotropy limit, which is con-
sidered in the present paper.

Now, using the standard renormalization procedure the
renormalization constants Z�N,p��N,p�� defined in Eq. �75� are
found from the requirement that function �77� is UV finite
�i.e., contains no poles in 	� when it is written in renormal-
ized variables and with the replacement F�N , p�→FR�N , p�.
In the end, from Eqs. �77� and �82� we have

Z�N,p��N,p+2�i−2�� = �2i +
Sd

�2��d

g

A

1

2	
Qi, i = 1,2,3, �83�

where A=8u�1+u�2d�d+2��d+4�. Using the definition of the
matrix of anomalous dimensions ��N,p��N�,p�� given in Eq.
�70�, we are coming to the following result:

��N,p��N,p+2�i−2�� = −
Sd

�2��d

g

A
Qi, i = 1,2,3, �84�

and the desired matrix of critical dimensions �72� has the
form

��N,p��N,p�� =
N	

3
+ ��N,p��N,p��

� , �85�

where the asterisk means that the quantities are taken at the
fixed point. The nonzero one-loop contribution to the matrix
of critical dimension �85� is represented by Eq. �84�. It
means that the matrix elements of the matrix ��N,p��N�,p��
other than given in Eq. �84� are equal to zero. It can be seen
immediately that the matrix of critical dimensions depends
on the anisotropy parameters �1 and �2.

In the end, the critical dimensions ��N , p� are given by
the eigenvalues of matrix �85�. In the isotropic limit ��1
=�2=0� one comes to the triangular matrix; therefore, its
eigenvalues are given directly by the diagonal elements. Be-
sides, in the one-loop level the isotropic result is also inde-
pendent of the reciprocal value of the Prandtl number u�,
namely,

��N,p� =
N	

3
+

2p�p − 1� − �d − 1��N − p��d + N + p�
3�d − 1��d + 2�

	 .

�86�

In general, Eq. �86� represents the critical dimensions for the
model with the presence of large-scale anisotropy and the
isotropic critical dimensions are obtained when one takes
even values for N and puts p=0. This result is the same �up
to normalization� as the isotropic results �or results with
large-scale anisotropy� obtained for the toy models of turbu-
lent advection with a given Gaussian statistics of the velocity
field �Kraichnan’s rapid-change model, frozen velocity field
model, and models with finite correlations in time of the
velocity field�, i.e., roughly speaking, within the one-loop
approximation the anomalous behavior of the single-time
correlation functions �the structure functions �37� are the ex-
amples� does not depend on the statistics of the velocity
field. As we shall see in the next section the situation is
different when the isotropy of the system is broken and the
small-scale anisotropy of the energy pumping is assumed. In
this case, the matrix of critical dimensions is not diagonal
and the eigenvalues depend on anisotropy parameters in dif-
ferent ways for different models. But, first, let us discuss the
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influence of the small-scale anisotropy on result �86� in the
framework of the present model.

The fact that matrix �85� is triangular in the isotropic case
�it is also triangular in the case with large-scale anisotropy� is
important because it allows one to assign uniquely the con-
crete critical dimension to the corresponding composite op-
erator even in the case with small-scale anisotropy and to
study their hierarchical structures as functions of p �see Ref.
�26� for details�. As was shown in Ref. �26� within the Kra-
ichnan model, as for anomalous scaling, the leading role is
played by the operators with the most negative critical di-
mensions: for the structure functions �37� with even N, it is
the operator with p=0 and for the structure functions �37�
with odd N it is the operator with p=1. The same situation
also holds in the present model with the velocity field driven
by the Navier-Stokes velocity field.

In Figs. 7–11, the behavior of the minimal eigenvalues of
the matrix of critical dimensions ��N , p� for various values
of N=3–7 for even values of N and p=1 for odd values of
N� is shown as a function of relatively small anisotropy pa-
rameters �1 and �2 in the weak anisotropy limit in the three-
dimensional case. The dependence of the critical dimension
��2,0� is not shown explicitly because it must be identically
equal to zero. It can be shown, for example, by using the
so-called Schwinger equation �see, e.g., Ref. �26��.

Dimensions ��N , p� obey the following important hierar-
chies:

��2n,0� 
��2n + 2,0� , �87�

��2n + 1,1� 
��2n + 3,1� , �88�

��N,p� 
��N,p��, p 
 p�. �89�

In the isotropic case ��1,2=0�, their validity follows from Eq.
�86�. On the other hand, in the small-scale anisotropic case
they follow from numerical investigations �see Figs. 5–11 to
test relations �87� and �88��. Relations �87�–�89� are impor-
tant for the determination of asymptotic behavior of the
single-time structure functions in the next section.

C. Anomalous scaling of the structure functions SN

Now, we are ready to write down the final asymptotic
expression for the structure functions �37�. First of all, in the
uniaxial anisotropy situation when the preferred direction is
given by unit constant vector n, as defined in Eq. �8�, the
structure functions �37� can be decomposed in the following
way �Legendre decomposition� �62�:
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SN�r� = �
p=0

�

SN,p�r�Pp�z�, z = �n · r�/r , �90�

where Pp�z� are the so-called Gegenbauer polynomials �the
d-dimensional generalization of the Legendre polynomials;
see, e.g., Ref. �63�� and SN,p are the corresponding scalar
coefficients that depend only on r= �r� in the case of large-
scale anisotropy �30�, but they can depend also on the aniso-
tropy parameters in the case with small-scale anisotropy.
Now, using the combination of the RG representation �59�
for the decomposed SN given in Eq. �90� with dimensions
�68� together with the OPE �65� leads to the general
asymptotic expression for the structure functions �37� within
the inertial range, namely,

SN�r� � rN�1−	/3� �
N��N

�
p

�CN�,p�r/L���N�,p� + ¯� , �91�

where p obtains all possible values for a given N�, CN�,p are
numerical coefficients which are functions of the parameters
of the model �	 ,d ,�1 ,�2 ,z�, the dimensions ��N� , p� are
given by the eigenvalues of the matrix of critical dimensions
�85�, and the Gegenbauer polynomials Pp�z� from decompo-
sition �90� are included in the coefficients CN�,p. In Eq. �91�
the ellipsis means contributions by the operators others than
F�N , p� which are not important in the asymptotic regime
�see, e.g., �21,26� for details�. The appearance of dimensions
��N� , p� with p�0 on the right-hand side of Eq. �91� is
related to the fact that, in the presence of small-scale aniso-
tropy, the corresponding operators acquire nonzero mean
value. On the other hand, the leading term for the small r /L
behavior of the structure function SN is given by a term with
the minimal possible value of ��N� , p�. Using the relations
given in Eqs. �87�–�89� the final asymptotic expressions for
the single-time structure functions in the presence of weak
uniaxial small-scale anisotropy are

SN�r� � rN�1−	/3��r/L���N,0� �92�

for even value of N, and

SN�r� � rN�1−	/3��r/L���N,1� �93�

for odd value of N with critical dimensions ��N ,0� or
��N ,1� given in Figs. 7–11.

In the end, let us briefly discuss the persistence of the
anisotropy in the inertial range in the present model. It is
well known that the persistence of anisotropy is given by the
behavior of odd correlation functions and appropriate quan-
tities for their investigations are the dimensionless ratios
R2k+1�S2k+1 /S2

k+1/2. Because ��2,0�=0 then their explicit
asymptotic form is �N=2k+1, k1�

RN =
SN

S2
N/2 � � r

L
��N,1�

, �94�

and from the results shown in Figs. 7, 9, and 11 it is evident
that the so-called skewness factor R3=S3 /S2

3/2 decreases for
r /L→0 but much slower than it is expected from dimen-
sional analysis, while the higher-order ratios R2k+1 �k2�
increase. These results are qualitatively �and in the isotropic
limit �1,2→0 also quantitatively� in agreement with those
obtained in the framework of the investigation of the anoma-
lous scaling of a passive quantity advected by the Gaussian
velocity fields �5–9,17,26,30,34,41� �see also survey papers
�18,62� and references cited therein�.

VII. COMPARISON WITH THE ANISOTROPIC
RAPID-CHANGE MODEL

As was already mentioned in Sec. I, in Refs. �26,34� the
influence of uniaxial small-scale anisotropy on the anoma-
lous scaling of the single-time structure functions of a pas-
sive scalar advected by the Gaussian velocity field with �
correlations in time �26� �the rapid-change model� and with
finite time correlations �34� was studied. But these models
can be considered only as toy models of real anisotropic
turbulent advection; therefore, the natural question immedi-
ately arises, namely, what is the difference between the re-
sults obtained in those investigations and the results obtained
in the framework of a more realistic nonlinear model consid-
ered in the present paper. The answer on this question is
interesting at least because, on one hand, it can shown un-
ambiguous difference between the results obtained within the
model with a Gaussian statistics of velocity field �e.g., the
rapid-change model� and the results obtained within the
model with the non-Gaussian statistics of the velocity field
�the velocity driven by the stochastic Navier-Stokes equa-
tion� even at the one-loop approximation level; and, on the
other hand, it is also interesting for the determination of the
importance of inclusion of nonlinearities of the velocity field
�the existence of higher velocity correlations� for the inves-
tigation of anomalous scaling. For example, in Refs. �26,34�
it was shown that in the framework of models with a Gauss-
ian statistics of the velocity field there exist regions of aniso-
tropy parameters �large enough positive values of �1 and �2�
for which the critical dimension ��3,1� becomes negative
and the skewness factor R3 �see Eq. �94� for N=3� increases
going down toward the depth of the inertial interval in con-
trast to the isotropic case and to the case when anisotropy
parameters are not very large. The open question is whether
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such a behavior is also held in the model with the velocity
field driven by the stochastic Navier-Stokes equation or it is
only an artifact related to the Gaussian statistics of the ve-
locity field. However, when one works with weak anisotropy
limit �our case�, the ultimate answer cannot be done. Thus,
the question is still open and will be considered elsewhere.
Thus, in what follows, we shall try to compare our results to
those obtained in Ref. �26�, namely, we shall try to compare
the corresponding critical dimensions ��N , p� as functions of
anisotropy parameters which drive the anomalous scaling of
the structure functions of scalar fields in both models.

However, first of all, a short remark must be done. In the
present model the small-scale anisotropy is introduced into
the system by the geometric properties of the statistics of the
random force which drives the stochastic Navier-Stokes
equation for the velocity field �see Eqs. �4� and �8��. On the
other hand, the anisotropic properties of the turbulent envi-
ronment in the rapid-change model �26� �brief description
will be also done below� is given directly by the Gaussian
statistics of the velocity field. Nevertheless, the comparison
can be done because the corresponding isotropic critical di-
mensions are the same for both models �up to normalization,
see below� and, at the same time, the critical dimensions are
the continuous functions of anisotropy parameters in the cor-
responding anisotropic models. Another fact, which must be
also taken into account in what follows, is the fact that in our
model we have supposed that the uniaxial anisotropy is
weak, i.e., the anisotropy parameters are close to zero
���1,2��1� and, as a result, only the linear parts of all quan-
tities as functions of anisotropy parameters were taken into
account during calculations �see Secs. III–VIII�. On the other
hand, in Ref. �26� the calculations were done with no restric-
tions on the value of anisotropy parameters. It means that to
have relevant comparison of both models it is necessary to
carry out all calculations given in Ref. �26� in the limit of
weak anisotropy and only then the comparison of the results
of both models can be done. This is actually done in what
follows.

Let us briefly describe the rapid-change model with small-
scale uniaxial anisotropy. The advection of a passive scalar
field ��x� in the rapid-change model is described by the sto-
chastic equation �for details, see Ref. �26��

�t� + vi�i� = �0�� + f�, �95�

where �0 is the molecular diffusivity coefficient �for further
notation, see Sec. II� and the velocity field v�x� obeys a
Gaussian distribution with zero mean and correlator

�vi�x�v j�x��� = g0�0��t − t��	 ddk

�2��dRij�k�k−d− eik·�x−x��.

�96�

Here, g0 plays the role of a coupling constant, the anisotropic
transverse tensor Rij�k� is given in Eq. �8�, and 0� �2 is a
parameter with the real �Kolmogorov� value  =4 /3.

The detailed field theoretic RG analysis of the stochastic
model defined by Eqs. �95� and �96� was done in Ref. �26�,
where the IR stable scaling regime was found with the cor-
responding coordinates of the fixed point and also the analy-

sis of the scaling functions of the single-time structure func-
tions of the scalar field was done by using the OPE, where
the main contribution is again given by the composite opera-
tors given in Eq. �69�. We have repeated all the necessary
calculations within the rapid-change model in the weak an-
isotropy limit and the final asymptotic inertial interval ex-
pression for the single-time structure functions �37� is ob-
tained in the form �see Refs. �26,34� for details�

SN�r� � rN�1− /2��r/L���N,0�, �97�

for even value of N, and

SN�r� � rN�1− /2��r/L���N,1�, �98�

for odd value of N, respectively, as a result of the fact that
the hierarchy relations �87�–�89� hold. Here, ��N , p� are
again the corresponding critical dimensions of the composite
operators given in Eq. �69�, but now they are calculated in
the framework of the rapid-change model. In the isotropic
case they are the same �up to normalization  =2 /3	� as
those present in Eq. �86�, namely,

��N,p� =
N 

2
+

2p�p − 1� − �d − 1��N − p��d + N + p�
2�d − 1��d + 2�

 .

�99�

We shall not present here analytical expressions for the
corresponding critical dimensions in weak anisotropy limit
for the rapid-change model because they can be simply de-
rived from expressions presented in Refs. �26,34�. Rather we
shall concentrate on the numerical comparison of the corre-
sponding results with those presented in the previous section
in the framework of the model of a passive scalar advection
by the corresponding Navier-Stokes velocity field. In Figs.
12–21 the behavior of the corresponding critical dimensions
��N , p� for N=3, . . . ,7 and p=0,2 for even values of N and

-0.2 -0.1 0.0 0.1 0.2
0.055

0.060

0.065

0.070

0.075

0.080
1.38

1.39

1.40

1.41

1.42

α
1

∆[3,1]/ξ, α
2
=0, d=3

∆[3,3]/ξ, α
2
=0, d=3

FIG. 12. Dependence of the critical dimension ��3, p� /� for p
=1,3 on the anisotropy parameter �1 for �2=0 in the weak aniso-
tropy limit and for spatial dimension d=3. The solid line corre-
sponds to the model of a passive scalar advection by the velocity
field driven by the stochastic Navier-Stokes equation ��=	, where 	
is defined in Eq. �5�� and the dashed line corresponds to the rapid-
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p=1,3 for odd values of N is shown as functions of aniso-
tropy parameters �1 and �2. It is shown that the critical di-
mensions which are related to the existence of anomalous
scaling �see Eq. �94�� and which are universal �the same� for
models with Gaussian and non-Gaussian statistics of the ve-
locity field in the isotropic case �as well as in the case with
large-scale anisotropy� at one-loop level of approximation
are strongly nonuniversal in the case when the small-scale
anisotropy is present.

VIII. CONCLUSION

Using the field theoretic RG technique and the operator
product expansion, we have investigated the influence of
weak uniaxial small-scale anisotropy on the behavior of the
single-time structure functions of a passive scalar advected
by the velocity field driven by the stochastic Navier-Stokes
equation in one-loop approximation. First of all, the stability

of the corresponding IR scaling regime for three-dimensional
system as a function of anisotropy parameters was shown,
which is given by the IR stable fixed point of the correspond-
ing RG equations �see Fig. 4�. We have also briefly investi-
gated the influence of the small-scale anisotropy on the tur-
bulent Prandtl number Prt. It was shown that in the weak
anisotropy limit the dependence of Prt on the anisotropy pa-
rameters of the model is rather small �see Fig. 5�, but the
situation can be radically different when no restriction on the
anisotropy parameters is assumed.

Further, we have studied the influence of small-scale
uniaxial anisotropy on the anomalous scaling of the single-
time structure functions of a passive scalar in the weak an-
isotropy limit by using the OPE. The leading composite op-
erators with the smallest �the most negative� critical
dimensions are studied in detail and the corresponding criti-
cal dimensions ��N , p� are found as functions of the aniso-
tropy parameters. The persistence of anisotropy deep inside
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the inertial range is demonstrated and briefly discussed by
using the inertial range asymptotic behavior of the so-called
skewness and hyperskewness factors �see Eq. �94��. It is
shown that the corresponding anomalous dimensions, which
are the same �universal� in the isotropic case at the one-loop
level for all models of passively advected scalar field by the
velocity field with a Gaussian and non-Gaussian statistics,
are different �nonuniversal� in the case with the presence of
small-scale anisotropy and they are continuous functions of
the anisotropy parameters. The difference is demonstrated by
the comparison of the anisotropic rapid-change model �26�
with the model studied in the present paper, namely, the
model of a passively advected scalar quantity by the turbu-
lent environment given by the corresponding stochastic
Navier-Stokes equation �see Figs. 12–21�. It must be men-
tioned once more that all calculations within the present pa-
per were done in the weak anisotropy limit, i.e., we have
supposed that the absolute values of the anisotropy param

eters are small enough to allow using the linear approxima-
tion with respect to them. Without a doubt, for deeper and
more adequate comparison of the models, it is necessary to
go beyond the weak anisotropy limit calculations. In this
respect at least one interesting question remains still open,
namely, whether the existence of the regions of anisotropy
parameters within the Gaussian models of passive advection
�26,34� for which the critical dimension ��3,1� becomes
negative and the skewness factor R3 in Eq. �94� increases
going down to the depth of the inertial interval in contrast to
the isotropic case and to the case when anisotropy param-
eters are relatively small is an artifact related to the Gaussian
statistics of the velocity field, or it also holds for more real-
istic models where the statistics of the velocity field is given
by the stochastic Navier-Stokes equation. Of course, this
question can be answered only when the corresponding mod-
els will be compared in the so-called strong anisotropy case,
i.e., in the case with no restrictions on anisotropy parameters.
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FIG. 17. Dependence of the critical dimension ��5, p� /� for p
=1,3 on the anisotropy parameter �2 for �1=0 in the weak aniso-
tropy limit and for spatial dimension d=3 �for the notation, see the
caption of Fig. 12�.
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FIG. 18. Dependence of the critical dimension ��6, p� /� for p
=0,2 on the anisotropy parameter �1 for �2=0 in the weak aniso-
tropy limit and for spatial dimension d=3 �for the notation, see the
caption of Fig. 12�.
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FIG. 19. Dependence of the critical dimension ��6, p� /� for p
=0,2 on the anisotropy parameter �2 for �1=0 in the weak aniso-
tropy limit and for spatial dimension d=3 �for the notation, see the
caption of Fig. 12�.
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tropy limit and for spatial dimension d=3 �for the notation, see the
caption of Fig. 12�.
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APPENDIX A

The explicit form of the coefficients gj� ,uj� ,�ik� ,�k� for
i=1,2 ,3; j=0,1 ,2,; and k=1,2 from Eqs. �48�–�51� is

g0� =
8�d + 2�
3�d − 1�

	 ,

g1� = − g0�

3d4 + 4d3 + d2 − 8d − 32

dM1
,

g2� = g0�

6d4 − d3 + 5d2 − 52d − 16

dM1
,

u0� =
1

2
�− 1 +

�9d + 16
�d

 ,

u1� =
16�d + 2�N1

d3/2M1M2M3
, u2� =

8�d + 2�N2

d3/2M1M2M3
,

�11� =
6d2 + 6d − 32

M1
,

�12� =
3d4 + d3 − 24d2 + 10d + 16

M1
,

�21� =
− 8�d2 − 3�

M1
, �22� =

8�3d2 − 3d − 5�
M1

,

�31� = 0, �32� = 0,

�1� =
N3

M1M3
, �2� =

N4

M1M3
,

where

M1 = 3d4 + 4d3 − 5d2 + 10d − 56,

M2 = 9d + 16 + �d�9d + 16� ,

M3 = d3/2�d + 1� + �9d + 16�d2 + d − 4� ,

N1 = 9d5 − 11d4 − 102d3 − 42d2 + 240d + 256 + �d�9d + 16�

��d2 − 2��d + 1��5d − 8� ,

N2 = 81d5 − 63d4 − 512d3 + 104d2 + 784d + 256

+ �d�9d + 16��d + 1��16 + d�24 + d�33d − 80��� ,

N3 = 2�9d + 16�48 + d�d + 1��d�d − 5� − 4��

+ 2�d�d + 1��32 + d�− 24 + d�9d − 13��� ,

N4 = �9d + 16�64 + d†− 48 + d„d − 1��6 + d�− 22

+ d�3d + 7���…‡ + �d�d + 1�„− 32 + d�− 72 + d�146

+ d�3d2 + d − 66���… ,

APPENDIX B

The explicit form of the coefficients Qi with i=1,2 ,3
from Eq. �82� is

Q1 = 2p�p − 1���u + 1��d2 + 5d + 4 + 3��2 + �d + 3��1��

− 3�u + 2���2 + �d + 3��1� − 3�d + 3��2u + 1��� ,

Q2 = 4�d + 4��− p�p − 1� + �d − 1���2 + d + 2p�n + 2n�n − 1���

��u + 1� − 4�1�6p�p − 1� − �d + 1���4 + d + 6p�n

+ 2n�n − 1����1 + u�2��d2 − 4�p�p − 1�

+ 2��4 + d + 2p − 4dp�n + 6n�n − 1�����1 + u��2

− �2 + u��2� + 4�1�6p�p − 1� − �1 + d���4 + d + 6p�n

+ 2n�n − 1����2 + u� ,

Q3 = 8��4 + d + 6p�n − 2�d − 2�n�n − 1����2 + u��1

− �1 + u��1 + �2u + 1��� + 4��d3 − 4�2 + p� + 2d2�2 + p�

+ 2d�2p − 1��n + 2�d2 − 4�n�n − 1����1 + u��2

− �2 + u��2� ,
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FIG. 21. Dependence of the critical dimension ��7, p� /� for p
=1,3 on the anisotropy parameter �2 for �1=0 in the weak aniso-
tropy limit and for spatial dimension d=3 �for the notation, see the
caption of Fig. 12�.
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